Seeing that they need quite a lot of clean water, which is not widely available everywhere during the entire year in big amounts, especially with these droughts due to climate change.

  • jet@hackertalks.com
    link
    fedilink
    English
    arrow-up
    0
    ·
    11 months ago

    There’s many different nuclear reactor designs

    For the traditional ones that require lots of cooling water, oceans are typically used so they don’t suffer from droughts. If you actually need fresh water you have desalinization available, and nuclear power can power that.

    There are more self-contained designs, as you would see on ships.

    They’re also some hands-off designs that generate low amounts of power over a long period of time used for remote installations.

    • hulemy@ani.socialOP
      link
      fedilink
      English
      arrow-up
      0
      ·
      11 months ago

      Would the hypothetical nuclear fusion power plant require less water? And do you think that when we finally find out how to do it, a fusion based design will become widespread?

      • CherenkovBlue@iusearchlinux.fyi
        link
        fedilink
        arrow-up
        0
        arrow-down
        1
        ·
        11 months ago

        Fusion designs currently require a ton of water for cooling (first wall and divertor) beyond what is needed for electricity production.

  • IchNichtenLichten@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    11 months ago

    Nuclear is feasible in lots of places if the question is, “given enough money can we build a nuclear plant here?”

    Nuclear gets much less feasible if the question is, “how do we generate electricity in the most cost effective way we can?”

  • CherenkovBlue@iusearchlinux.fyi
    link
    fedilink
    arrow-up
    0
    arrow-down
    1
    ·
    11 months ago

    You need water to generate steam to turn a turbine and make electricity (same for coal, natural gas, fusion). However, many advanced reactor designs do not use water for the reactor coolant itself, unlike light water reactors that do. They use gas, molten salt, or liquid metals. As a result, you can get to quite high temperatures useful for process heat, such as hydrogen production. Direct desalination might also be doable, the issue/question being on the design of the non-nuclear side of the plant.

    A lot of Gen IV designs are in the process of commercialization now, with demonstrations slated for later this decade.